
Cloud-native
transformation for
ETL, analytics, and
data warehouse
Automation best practices, key considerations,
and target-specific insights

2LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

1 2

This e-book explores different strategies for moving legacy

workloads to the cloud. In it, we describe how you can address

the following major modernization challenges:

• Handling native data warehouse properties at a
schema level

• Auto-transforming code and business workflows
to an optimized cloud equivalent

• Meeting performance SLAs

• Identifying technical debt

• Ensuring end-to-end operationalization in the target

environment

Abstract
It also shares migration and architectural best practices and

with target-specific insights for the leading cloud platforms.

It outlines how automation can help your enterprise simplify

and fast-track their end-to-end transformation journey.

33 4

LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Contents
4 Key considerations for modernization

on the cloud
Choosing the right approach 6

Addressing major modernization challenges 10

Handling native data warehouse properties 11

Auto-transforming code 12

Meeting performance SLAs 13

Handling technical debt 14

Ensuring application performance and validation 15

Ensuring end-to-end operationalization 16

Managing people and processes 17

18 Modernization best practices
Four pillars for a seamless cloud migration 19

Modernization best practices for different cloud targets 20

Snowflake 20

Amazon Redshift 21

Azure Synapse 22

Key considerations for transforming different types of legacy systems 24

Enterprise data warehouse 24

ETL 24

Analytics and reporting workloads 25

Architectural patterns and best practices 26

Sample architecture for a cloud data warehouse 28

Sample architecture for cloud-native ETL and orchestration 30

Performance optimization 31

32 How LeapLogic can help
Automation as a strategy for ensuring best practice 39

Enforce a data driven approach 39

Bucket workloads into logical units 39

Reuse existing investments with intelligent code transformation 42

Ensure operational and performance efficiency on the target 44

Maximize ROI 44

Tech stack design: Sample use case 45

Addressing non-functional aspects 46

48Enterprise success stories

4LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Key considerations
for modernization
on the cloud

1 Key considerations 2 3 4

5LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Will the end user experience

be impacted?

Business
disruption

Do we have the specialized

skills needed for the transition?

Lack of
expertise

Migrating SQL is one thing.

But what about all my queries,

applications, business logic,

etc.?

An incomplete
view

Will we be able to forecast

our cloud spend or will the

costs spiral?

Costs
and ROI

Should I migrate my

workloads as-is or go for

total re-engineering?

Migration
strategy

Will we need an army

of engineers?

Will our day-to-day
operations continue to run
smoothly?

Is there a middle path?What about my existing

investments?

1 Key considerations 2 3 4

6LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Choosing the right approach
Manual or framework-based approach Vs.
End-to-end fully automated transformation

Ensuring seamless transformation and

operationalization of large-scale enterprise

workloads on the target environment can

be an arduous task. Organizations have

multiple options – starting afresh, using

semi-automated tools, building a

modernization solution in-house, migrating

manually, or utilizing automated technology

product for end-to-end transformation.

1 Key considerations 2 3 4

7LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

The section below compares manual migration (or building an in-house product) with an end-to-end automated transformation product.

• Obligation to start small

• Lack of extensive knowledge base, code pattern library,

etc.

• Error-prone, risky, time-consuming, and complex

• In-built library of code patterns and anti-patterns

for pattern-based analysis and conversion

• Fast, risk-free, and simple

Knowledge
base

Manual identification of complex dependency structure

between jobs, scripts, and entities

View end-to-end data and process lineage to drill

specific insights for phased offload and systematic

decommissioning of legacy systems
Lineage

Need to understand and translate business logic,

orchestration scripts (jobs), ETL logic, analytic scripts, etc.,

which requires specialized skillsets

Seamless offloading of applications and use cases, by

converting all types of scripts without any upskilling or

training

Logic
transformation

Need to validate the behavior and performance of the

migrated applications and source code in the target

environment manually

Automatically validates and certifies the migrated code

before it is transitioned into productionValidation

Manual or framework-based approach End-to-end fully automated transformation

1 Key considerations 2 3 4

8LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Need to identify and optimize schema, code,

and orchestration as per the target nuances

Provides target optimization recommendations at the

schema, code, and orchestration level Optimization

Migrated workloads need to be productionized on the

target and integrated with third-party tools manually

Ensures end-to-end operationalization, DevOps setup, CI/

CD processes and integration with third-party tools and

services
Operationalization

May be influenced by prejudice and organizational

pressure. Requires strategizing and designing

future-state architecture, tech stack components,

optimization and refactoring needs, capacity, etc.

Delivers an actionable transition plan to the future state, and

recommendations as per the type of workloads (ETL-heavy/

consumption-heavy, etc.) and business goals. Provides

recommendations for optimization and refactoring

Future-state
architecture

Manual or framework-based approach End-to-end fully automated transformation

1 Key considerations 2 3 4

9LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Skip to the automated transformation section
if you have already decided on leveraging
automation.

Continue reading to understand target
and source specific technical nuances,
modernization best practices and best practices
for addressing common roadblocks.

OR

1 Key considerations 2 3 4

10LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Addressing major
modernization challenges
Most enterprises have spent years of effort on creating

their business logic, workflows, and execution rules.

Whether they choose to migrate these manually or use an

automated product, the transformation journey involves

major challenges.

Let’s explore how you can address these challenges.

Handling native data warehouse properties at a schema level

Auto-transforming code and business logic

Meeting performance SLAs

Handling technical debt

Ensuring application performance and validation

Ensuring end-to-end operationalization on target

Managing people and processes

1 Key considerations 2 3 4

11LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Handling native data warehouse properties

Mapping entity relationships, constraints,

indexing, data types, partitioning strategies,

etc. with the target schema and data model

is a key challenge. You might also need to

reconfigure some data models to minimize

time-to-build, costs, and facilitate business

intelligence (BI) tools and ad-hoc queries.

Common roadblocks: Mapping data and
column types
Data type mapping is complex and requires intensive
effort. For instance, AWS Redshift has the most common
set of data types since it is PostgreSQL-compatible. On
the other hand, Google BigQuery uses STRING instead
of VARCHAR and employs REPEATED array type and
RECORD semi-structured objects. Snowflake supports
OBJECT, VARIANT, and ARRAY for semi-structured data.

Column type mapping is equally complex. For instance,
Teradata supports CLOB and BLOB data types, whereas
Amazon Redshift currently does not support LOB data
types. Each target environment requires a different
approach. For example, while using AWS, one option is
to store the CLOB and BLOB data types as Amazon S3
objects and store the link to an S3 object in the Amazon
Redshift table.

This means you cannot convert schema

simply by configuring a migration pipeline.

You will need to investigate and analyze

multiple configurations. As rule of thumb,

cloud-native implementation is the best

strategy. However, if there is no one-to-one

equivalent, you need to create a custom

implementation. Moreover, you need to find

the gaps related to ETL-native functions,

libraries, and adapters. For instance, setting

up and using libraries in the cloud is different

compared to legacy data warehouses.

1 Key considerations 2 3 4

12LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

While manual or even semi-automated conversion is slow and risky

as it increases the chances of inserting errors, auto-transformation

can also be challenging without the right tools. Here is why:

Common roadblocks: Difficulty in migrating complex scripts
For sources like Informatica, workloads can run into 10k+ lines of code per script
with complex expressions, running aggregates, link conditions, dynamic lookups,
assignment variables, command tasks, sequences, parameterized queries,
dynamic queries, parameter files, abort and error, etc. Transforming these involves
a hierarchical representation of workflows, logic segregation as per business
processes, workflow, and mapping-level parallelism, etc. Your migration product
needs to handle all logic written across these native Informatica constructs
effectively and performantly on the target.

Auto-transforming code

Lack of complete understanding of the code logic

Partial availability of documentation

Potential difference in target-specific best practices for

writing and executing code

Need for custom UDF implementation of certain functions

and keywords

1
2
3

4

Apart from the SQL statements and constructs, it is also important to

transform the ETL logic, which involves event-based error handling,

orchestration, data cleansing, and writing or reloading the processed

data back to the source data warehouse for BI.

1 Key considerations 2 3 4

13LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Meeting performance SLAs

Workloads transformed to the target-

equivalent may not always offer equivalent

performance to meet the business or

technical SLAs. Some code might not

perform optimally as per the target

implementation, architecture, chosen tech

stack, or available capacity.

In such cases, though the workload will

execute in the target environment, it will be

resource-constraining, poor-performing,

and more costly. This in turn impacts

production SLAs, business decisions, and

the execution cycle.

To meet performance SLAs and control

costs, you need to optimize the price-

performance ratio during modernization.

Focus on optimizing your workloads

for the target, and then on optimizing

the infrastructure and environmental

parameters. Spawning more nodes in a

cluster might seem easy, but this may

increase cost.

Common roadblocks: Inadequate support for
stored procedures, orchestration mechanisms, etc.
Stored procedures act like a repository of miniature data
applications to save data and preserve specific knowledge.
Many cloud data warehouses miss the ability to write
and use stored procedures. Though data warehouses like
BigQuery and Snowflake support user-defined functions,
this is not enough. As an alternative, you can use a separate
platform for scheduling task orchestration or parameterized
queries, open source options like Airflow and Luigi, or
commercial cloud-based alternatives.
Cloud data warehouses like Amazon EMR, GCP Dataproc,
and Azure HDInsights do not support recursive queries, PL/
SQL cursors, transaction handling, nested dependencies,
triggers, etc. All such behaviors must be custom-built.
For Teradata, you also have to build queues, error logs,
and global temporary tables. As a workaround, you can
move the logic to an external script (for example, Python
or Java), external UDFs, or UDFs written in C, C++, or Java
programming.

1 Key considerations 2 3 4

14LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Handling technical debt

Constant procrastination of design and code defects raised in the

system leads to a death-spiral of technical debt. Stacked in the

system over the years, this causes multiple operational issues.

Modularizing the architecture is one of the common techniques

to avoid technical debt. For this, it is important to identify

dependencies between the workloads at the process and data

level, which will also impact lineage.

Common roadblocks: Inability to identify technical debt at various levels
Schema – Determining the right partitioning strategy helps logically divide the data
into different directories for efficient data retrieval:
• ‘Cluster by’ strategy: Groups data into different files for efficient data retrieval
• Splitting strategy: Splits data based on the selected columns
• Number of buckets: Defines the number of groups for clustering
• Other strategies such as sort by columns, distribute by keys, etc.
Data – Determining the data storage format, data compression format, etc.
Code – Determining the code design, interdependencies, phased offload strategy,
etc. Identifying anti-patterns in the codebase, resource-intensive queries, resource-
constraining and poor-performing scripts, jobs, etc.
Architecture – Determining the best architectural design in the span of workloads
across ingestion and data preparation, data processing, and BI/analytical pre-
processing, as well as consumption-tactical, consumption-decision support, and
consumption-analytical workloads.
Execution – Determining a parallel execution strategy to attain the best target
performance while factoring in the existing workload interdependencies.

An intelligent assessment tool can help you assess and

analyze your source code and plot extensive process and data

lineage to derive actionable insights. It provides prescriptive

recommendations to ensure that the target architecture is elastic,

flexible, and scalable for both present and future needs.

1 Key considerations 2 3 4

15LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

The migrated applications need to support to all use cases in the

target environment, which is possible only when each use case

is validated on live datasets.

As an example, the applications will commonly contain

interdependent production jobs. And there are scheduler scripts,

ETL workflows, stored procedures, shell scripts, etc. that feed into

these jobs, encompassing the overall application. All these artifacts

need to be analyzed together with their lineage. After the analysis

and transformation of source workloads to the target-equivalent,

the applications need to be validated and certified to ensure they

are performant in the target production environment.

Ensuring application performance
and validation

1 Key considerations 2 3 4

16LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Once the workloads are migrated to the target environment,

you need to move them to production and ensure they operate

smoothly, meet the SLAs, and incur costs in a predictable

range. End-to-end operationalization involves optimization, cost

minimization, operational monitoring, data governance, and more.

Here are some key considerations for each of these aspects:

Ensuring end-to-end
operationalization

Target capacity planning

• Setting up the environment

• Configuring the ideal cluster

• Enabling options for auto-scaling

• Ensuring auto-suspension and auto-resumption

• Optimizing cost-performance ratio

Target environment stabilization
through the parallel run period

• Parallel run at database, query, and report level

• Comparing source and target reports

Implicit data governance

• Setting up security policies

• Setting up security protocols such as SSL, AD integration, and IAM roles

• Defining regulatory compliance standards and complying with these

• Employing best practices and tools

• Setting up tools for lineage, metadata, etc.

CI/CD model

• Ensuring continuous integration and delivery (CI/CD)

• Setting up infrastructure as code

• Adhering to a project management methodology (like Agile)

• Employing a defect management system

• Ensuring code packaging and check-ins into SCM

• Ensuring version control and source code management

• Employing universal artifact management for DevOps acceleration

1 Key considerations 2 3 4

17LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

End-to-end operationalization helps enterprises meet business

SLAs, ensure smooth running of workloads on the cloud, go live

within the envisioned time-to-market, and reap the long-term

benefits of cloud-native services.

Powerful operation monitoring

• Getting automated alerts and notifications

• Leveraging visualization and operational dashboards

• Monitoring and operationalizing data (logs, metrics, and events
across resources, applications, and services)

• Detecting anomalous behavior

• Troubleshooting issues and automating actions

• Auditing and compliance

To ensure successful cloud modernization, people at every level across

the organization need to align on goals based on business value. All

stakeholders across functions must have a holistic view of the journey

and understand their responsibilities.

Relevant personnel should be aware of the industry’s latest tools, best

practices, and reference implementations. Re-skilling and upskilling

also need to be continuous processes. Additionally, enterprises must

ensure effective program and portfolio management by integrating IT

governance with organizational governance.

Managing people
and processes

1 Key considerations 2 3 4

18LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Modernization
best practices

1 Modernization 2 3

There are several best practices that help enterprises

successfully modernize legacy data warehouses and

operationalize them on the cloud.

3 4

19LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

REUSE AUTOMATE OPTIMIZE CERTIFY

Your existing

business logic,

historical

data, and

investments

Leverage

automation for

faster

time-to-value

Meet

performance

SLAs on

 the cloud

Validate

migrated

workloads

before putting

them into

production

Consider the following scenarios while

planning your migration journey:

• Identify resource-constraining, long-

running, and poor-performing workloads

• Assess as-is processes and define

the modernization strategy based on

supported features. For instance, Google

BigQuery has options for partitioning,

clustering, and selecting a pricing model

that best suits the query capacity and

concurrency needs

• Leverage various features and support

offered by different platforms to realize

transformation goals

1 Modernization 2 33 4

20LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Modernization best practices
for different cloud targets
Identifying the workloads to be migrated, automating their

migration, optimizing and validating them, and ensuring they are

built on a well-architected framework is only one part of the story.

Each target environment has nuances that need to be addressed

to ensure data warehouse optimization.

Here’s a quick overview of target-specific best practices for

migration to Amazon Redshift, Azure Synapse, GCP BigQuery and

Dataproc, and Snowflake.

Snowflake
Schema optimization

A well-designed schema is the key to efficient data processing. To

optimize schema, you need to optimally map data type, cluster

keys, and use transient tables, as necessary.

Snowflake automatically sorts rows on key table columns and

re-inserts them into the table. To store temporary data for ETL

processing that does not need to be maintained for a long time,

Snowflake supports defining tables as temporary/transient. This

helps reduce storage costs as temporary tables use less failsafe

storage than a standard table.

EXAMPLE

Teradata’s float data type is of size 8 bytes. Snowflake

provides three data type variants – float, float4, and float8.

It is recommended to use float8 rather than float.

1 Modernization 2 33 4

21LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Data loading optimization

The number of load operations that run in

parallel cannot exceed the number of data

files to be loaded.

Using materialized views

A materialized view is a pre-computed

dataset derived from a query specification

(the SELECT in the view definition) and

stored for later use.

Data unloading optimization

Snowflake supports bulk export (or unload)

of data from a database table into float and

delimited text files.

Amazon Redshift
Schema optimization

The right schema play is instrumental in

efficient conversion and processing. To

optimize schema, you need to optimally

map the data type, distribution style and

distkeys, sort keys, and use transient

tables, as necessary.

Distribution style and distkeys
When you execute a query, the query

optimizer redistributes the rows to the

compute nodes to perform any joins

and aggregations. By selecting a table

distribution style, you minimize the

impact of redistribution.

Sort key
To maximize value, create a sort key on

columns commonly used in WHERE clauses.

Use temporary tables as required
Amazon Redshift provides temporary tables,

which act like normal tables but are only

visible in a single session.

Run analyze and vacuum commands
Whenever you add, delete, or modify

a significant number of rows, AWS

recommends running the VACUUM

command followed by the ANALYZE

command.

Compression encoding
By default, Amazon Redshift stores data in a

raw, uncompressed format. When you create

tables in an Amazon Redshift database, you

can define a compression type, or encoding,

for the columns.

1 Modernization 2 33 4

22LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Data loading optimization

As a best practice, Amazon Redshift

suggests using the COPY command

to perform data loads. To manage data

consistency, use a manifest file to load the

data.

Data unloading optimization

Using the UNLOAD command, Amazon

Redshift can export SQL statement output

to S3 in parallel. This improves export

performance and reduces the impact of

running the data through the leader node.

Use a staging table to merge (Upsert)
Amazon Redshift does not support a single

merge statement to insert and update data

from a single data source. However, you can

effectively perform a merge operation by

loading your data into a staging table

and then either replacing existing rows or

specifying a column list.

Configuring manual workload management
(WLM) queues

Use WLM to define multiple query queues and

route queries to the appropriate queues at

runtime.

Leverage materialized views

Amazon Redshift supports materialized

views that provide significantly faster query

performance for repeated and predictable

analytical workloads such as dashboarding,

queries from BI tools, and ELT (Extract, Load,

Transform) data processing.

Use Amazon Redshift Spectrum as
applicable
Amazon Redshift Spectrum enables you to

query data directly from files on Amazon S3

through an independent, elastically sized

compute layer. This helps improve job

performance and query throughput.

Azure Synapse
Schema optimization

While designing a table, you can choose

between hash-distributed, round-robin

distributed, or replicated depending on the

size and nature of the table.

Choosing a distribution column depends on

several factors and usually involves trade-

offs. Once you design a table and choose a

distribution column, you need to create table

partitions to divide your data into smaller

groups.

1 Modernization 2 33 4

23LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Data loading optimization
SQL analytics support loading and exporting

data through several tools, including Azure

Data Factory, PolyBase, and BCP. For small

amounts of data where performance is not

critical, any tool can be used. However, when

you need to load/export large volumes of data

and ensure fast performance, PolyBase is the

best choice.

Keep the following in mind while optimizing

data loading:

• First load, then query external tables

• Group INSERT statements into batches

• Do not over-partition

• Minimize transaction sizes

Leverage materialized views
A materialized view pre-computes, stores,

and maintains data in Azure Synapse just like

a table. That is why queries that use all or a

subset of the data in materialized views have

faster performance.

Use an ordered, clustered columnstore
index
When users query a columnstore table in

Azure Synapse, the optimizer checks the

minimum and maximum values stored in

each segment. Segments that are outside

the bounds of the query predicate are not

read from disk to memory.
These are just some examples and each

target cloud or modern platform has

several such nuances to be considered for

native transformation and optimization

1 Modernization 2 33 4

24LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Key considerations for transforming
different types of legacy systems

Enterprise data warehouse
• Plan for a phased migration rather than a ‘big bang’ approach

• Handle proprietary elements like BTEQs efficiently to ensure they are

mapped properly and are performant on the target

• Select the most interoperable option, for example, GCP OMNI, which

is specifically built for multi-cloud data analytics

• Create a risk mitigation strategy factoring in any potential downtime

• Strategize for organizational changes including people and processes

• Consider all workloads of the data warehouse, including DML scripts,

orchestrator scripts, analytics scripts, and reporting queries

• Strategize for faster target stabilization to ensure minimal parallel

run period

• Plan to decommission and retire your legacy data warehouse

ETL
• Identify and analyze complex interdependencies between the

workloads and strategize the migration accordingly. For example, in

the case of Informatica ETL scripts, a dependency structure must be

identified, which typically exists in the form of Informatica XMLs to

workflows, and then to mappings and transformations. Similarly, for

DataStage ETL scripts, you need to identify and analyze all jobs and

components for each ETL script and job activity, sequencer, lookup,

aggregator function, Transformer stage, join, etc.

• Transform the core business logic to cloud-native wrappers or

orchestrators, including repackaging it with scripts for

production-ready jobs

1 Modernization 2 33 4

25LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

• Validate complex ETL scripts to ensure they are target-equivalent

and produce the desired result for all use cases and scenarios on

the target

• Ensure end-to-end execution on staging and production

environments after thorough system integration testing

• Assess usage patterns using automation accelerators. For example,

for SAS migration, workloads can be segregated into three

categories:

- ETL – mostly SQL + some SAS procedural: Code conversion

 strategy can be PySpark/Spark R/Spark Scala (based upon

 enterprise preference)

- SAS procedural – mostly statistical: Conversion strategy

 can be PySpark/Spark R/Spark Scala + Spark ML/ MLIB

- SAS advanced algorithms: Conversion strategy can be

 PySpark/Spark R/Spark Scala + Spark ML/ MLIB

• Map the conversion target for each usage pattern

• Enable all datasets used by SAS and migrate as cloud stores or

access through JDBC connectivity

• Use a staggered approach to convert and validate the converted

scripts

• Validate the complex analytics scripts to ensure they are target-

equivalent and produce the desired result for all use cases

• Ensure end-to-end execution on staging and production

environments after thorough system integration testing

Analytics and reporting
workloads

1 Modernization 2 33 4

26LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Given the different resource consumption patterns, enterprises need

to plan their future-state architecture carefully. For instance, if you are

moving to AWS, you will need to decide whether to move some of the

workloads to AWS EMR and others to Redshift, or all to Redshift, or

leverage open collaboration through PySpark, PyScala, etc.

A well architected cloud-native implementation is critical to achieve

the desired scalability and performance, cost savings, maintainability,

and adaptability. It will also ensure that you are properly architected

to optimize for the cloud-native capabilities of scale, elasticity,

intelligence, interoperability, etc. Architecture design therefore needs to

be scrupulous, methodical, and forward-looking keeping the nuances

of the underlying tech stack and data warehouse in mind. The next

section further describes some considerations for accomplishing that.

Architectural patterns and
best practices

1 Modernization 2 33 4

27LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Operational
excellence

• Support efficient
development
and running of
workloads

• Gain insights into
their operations

• Continuously
improve
supporting
processes and
procedures

Security

• Protect data,
assets, and
systems
leveraging the
cloud provider’s
security offerings

Reliability

• Operate and test
workloads across
their lifecycle
to check if they
can perform
their intended
functions
correctly and
consistently

Performance
efficiency

• Use computing
resources
efficiently to
meet system
requirements

• Maintain
efficiency
with evolving
technologies and
peaks in demand

Cost
optimization

• Run systems to
deliver business
value at the
lowest price point

Five tenets of a well-architected framework

1 Modernization 2 33 4

28LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

An increasingly popular architectural choice is

to move all your workloads from the legacy data

warehouse to a modern cloud data warehouse

such as AWS Redshift, Azure Synapse, GCP, etc.

Cloud data warehouses provide fully managed

services and as-a-service offerings for abstract

operations, network management, etc. Apart from

the various deployment modes and tech stack

choices available for your workload types, usage

patterns, and other enterprise needs, there can

also be other options.

Sample architecture for
a cloud data warehouse

1 Modernization 2 33 4

29LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Existing architecture

Proposed architecture

EXAMPLE

An illustrative

example of the

architecture on the

legacy side and

a corresponding

future-state

architecture.

1 Modernization 2 33 4

30LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

While transforming legacy ETL technologies like Informatica to

a future-state modern architecture, including cloud-native ETL

and orchestration services, you can consider an architecture

like the one illustrated below for Azure Data Factory (ADF).

Sample architecture for
cloud-native ETL and orchestration

Flat Files

Storage (Azure)

Data Factory

RDBMS

Azure DW

1

5

2

4 SSIS

3

API

On-premises NOTE

This is an illustrative example. The

architecture may differ for other

cloud-native ETL services and

implementation scenarios.

1 Modernization 2 33 4

31LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Performance optimization
Modern data warehouses like Amazon Redshift, Azure Synapse,

Google Cloud, and Snowflake provide a decoupled architecture,

eliminate the need for remodeling, and facilitate unification of data

across hybrid sources. Enterprises modernizing their data warehouse

to realize benefits such as full SQL support, serverless architecture,

strong partnerships with BI and ETL tools, and ease of maintenance.

One of the primary differences between modern and traditional data

warehouses is the type of storage. Modern data warehouses are

column stores while traditional data houses are row stores. Though

traditional data warehouses like Teradata, Netezza, Oracle, MS SQL

Server, Greenplum, Exadata, Vertica, IBM DB2, and others provide

some out-of-box performance optimization techniques like indexing

or join, these are not applicable to modern data warehouses.

Performance optimization helps enterprises to:

• Meet and exceed SLAs

• Resolve anti-patterns in the existing code to meet or exceed

production SLAs for all the transformed workloads – queries,

applications, reporting, and analytical workloads. There can be

multiple types of anti-patterns in your code at different levels,

such as file and query level, all of which should be resolved before

moving to the new environment. Some examples include predicate

push-down anti-pattern, select * anti-pattern, multiple updates on

one table, etc.

1 Modernization 2 33 4

32LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

How LeapLogic
can help

2 Automated workload
transformation 3 4

LeapLogic automates, simplifies, accelerates and de-risks the end-to-end

transformation journey using a step-by-step approach:

Vision Assessment Alignment Transformation Validation Operationalization

1

33LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Vision

Vision and strategy

• Interview business stakeholders

• Establish business context and assess the value, benefits,

challenges, and opportunities of moving to the cloud

• Develop a vision, purpose, and scope of work for the

cloud platform

• Identify cloud management enablers

• Identify independent applications that can be migrated

first to the cloud

• Set up the LeapLogic accelerators in

customer premises

What we deliver

• High-level data and platform requirements

• Strategy for business prioritization

2 Automated workload
transformation 3 41

34LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Assessment

Automated assessment

• Understand your legacy data warehouse footprint and data

formats using automated assessment

• Evaluate risks and critical data

• Map and understand the data flow within your business

• Identify data processing requirements, performance gaps,

and workflow dependencies

• Understand surrogate key generation

• Identify metadata, lineage, and orchestration requirements

• Identify business application dependencies

• Detailed legacy data warehouse and ETL assessment report showcasing

compute and storage intensive workloads

• Data flow diagram with identified SORs and various sources along with

integration of quality checks

• Surrogate key removal strategy

What we deliver

2 Automated workload
transformation 3 41

35LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Alignment

Customer alignment

• Identify business use cases for transformation and plan cloud capacity

• Set up data quality initiatives, identify dependencies, and prioritize

actions

• Develop a project timeline and define key success measures

• Provide a solution for surrogate key replacement and CDC jobs

• Discuss and finalize performance parameters

• Apply data security at rest and in motion

• Enable data encryption and masking via FPE

• Process jobs via cloud-native orchestrator services for all legacy data

warehouse and ETL code

What we deliver

• Apply orchestration mechanism

• Create cloud formation template

• Integrate service management tools in the target environment

• Show data lineage for transformation, processing, and consumption layers

• Integrate data catalog and handle PII

• Data quality and processing strategy

• Detailed project roadmap

• Cloud capacity estimation sheet

2 Automated workload
transformation 3 41

36LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Transformation

Automated transformation

• Migrate processed data to the cloud, store it, and feed it back to BI

and reporting tools

• Restore data to the legacy data warehouse for downstream

applications to access processed data

• Replicate the data quality framework on the target

• Connect to the legacy data warehouse for historical and incremental

migration

• Enable SOR data ingestion, processing, and consumption on the cloud

• Optimize design and perform system integration testing and user

acceptance testing

• Ensure adoption and knowledge transfer

What we deliver

• Provide production support for all applications

• Provide certification and handover documentation

• Certification and quality reports

• Installed systems with converted code

• Migrated business use cases

• Migration of historical data

• Integration with cloud-native services for workflow orchestration

• Support for two cycles of system integration testing and user

acceptance testing

2 Automated workload
transformation 3 41

37LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Validation

Automated validation

• Identify strategy to extract Delta records from CDC/Snapshot tables

• Perform business and data quality checks on extracted files

• Create staging layer in the legacy data warehouse to load the

extract

• Perform quality and data movement checks

• Merge staging and target environments

• Update views/tables as required

• Data extraction strategy

• Quality and data movement checks report

• Scripts to merge the legacy data warehouse stage with the target

What we deliver

2 Automated workload
transformation 3 41

38LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Operationalization

End-to-end operationalization

• Enable smooth transition into production

• Data replication and disaster recovery

• Optimize production performance and solve data errors

What we deliver

• Certification and quality reports

• Installed systems

• Productionized business use cases and cloud platform

• One-month support for production parallel run

2 Automated workload
transformation 3 41

39LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Based on our extensive experience with

large-scale modernization projects, here are

some best practices to help you address

common modernization challenges:

Enforce a data
driven approach
While strategizing transformation, assessing

your existing inventory of workloads and

source code is the first step to ensure you

get meaningful insights from the data.

Legacy code and logic have huge amounts

of information in the form of scheduler/

orchestrator scripts, ETL/ELT scripts, stored

procedures, DML and DDL statements, and

query execution logs. To get insights from

these, it is important to analyze all the scripts

together.

LeapLogic enables you to:

• Leverage your data and source code

• Analyze all your workloads together to take

informed decisions

• Devise a phased transformation strategy

• Strategize your offload program to realize

immediate ROI, savings, and leverage the

underlying benefits of the cloud.

Bucket workloads
into logical units
An intelligent workload assessment helps

segregate the workloads into logical buckets,

qualifying them for either as-is migration,

optimization, or complete refactoring.

The decision of whether to move data and

processes in one bulk operation or deploy a

staged approach depends on several factors.

These include the nature of your current

data analytics platform, workload types, the

number of data sources, and your future

ambitions and time frames.

Automation as a strategy
for ensuring best practices

2 Automated workload
transformation 3 41

40LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

75%
Did you know?

of legacy data workloads
can be migrated as-is
with intelligent
schema transformation
automation

15% 10%
workloads might require
additional optimization
because of certain
anti-patterns or absence
of direct equivalent in
the target environment

workloads require
complete re-engineering
based on target nuances
or for better resource-
consumption patterns on
the target

Typical 75:15:10 rule of migration

2 Automated workload
transformation 3 41

41LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Challenges of migrating as-is

• Mostly intuitive with no strategy

for rearchitecting in place

• Lack of inventory profiling and

optimization results in technical

debt being carried over to

the target

• The transformed workloads may

not meet the SLAs, impacting the

overall ROI

Challenges of complete

re-engineering

• Inability to align stakeholders and

processes across the enterprise

• Risk of building a data swamp

• Requires extensive training of people on

processes and technology

• Prolonged time-to-market

LeapLogic creates a fine balance between

these two approaches. It identifies the

technical debt and complete dependency

structure across workloads, documents

the ‘as-is’ state using an automated tool,

reverse-engineers logic from the code and

data model; and determines candidates

for ‘as-is’ migration and re-engineering.

This process ensures an optimized target

cloud environment, helping enterprises

meet the target production SLAs, control

costs, improve overall responsiveness

of the data warehouse, streamline

applications, processes, and user activities;

and maximize the value of current

investments.

2 Automated workload
transformation 3 41

42LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Reuse existing
investments with
intelligent code
transformation
To make the most of your existing

investments, you need to devise a strategy

for reusing legacy workloads like data,

analytics, and DML, ETL, orchestrator and

reporting scripts.

The ML-based intelligent code

transformation engine of LeapLogic helps

you reuse your existing investments by

smartly converting diverse workloads and

migrating the schema and data to the

target platform.

The self-learning, adaptive, repeatable, and

verifiable engine:

• Automatically converts up to 95% of the

legacy code to cloud-native code or open

collaboration platforms such as Python, with

assisted transformation for the rest

• Transforms DML, DDL, ETL, and scheduler

scripts along with stored procedures etc.

• Ensures optimized and parallel data ingestion

with PolyBase/T-SQL usage

• Enables automated schema conversion and

data migration

• Converts complex ETL scripts automatically

Optimization techniques

Plain translation of legacy workloads is not

enough. Instead, the legacy code and business

logic are transformed into target-equivalent

code where optimizations are applied at the

schema and code level. There are also various

kinds of performance tuning techniques

applied during transformation, such as hyper

parallelism, SQL merging, caching, custom

broadcasting, clause handling as per the target

data store, script merging, etc.

LeapLogic provides out-of-the-box support for

rectification and optimization of anti-patterns.

Here’s how it adds value:

• Re-engineers queries: Certain queries

specifically designed according to source-

specific nuances may need to be completely

re-engineered as per the chosen target. The

logic of such queries is typically too complex,

resource-constraining, and cost-incurring.

• Controls costs: Controls ever-increasing

operational costs associated with the misuse

2 Automated workload
transformation 3 41

43LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

of CPU/ IO capacity, cache hit ratio, etc.

• Improves overall responsiveness of the

data warehouse by optimizing poor-

performing, resource-intensive, and

expensive workloads.

• Streamlines applications and business

processes as per the target environment’s

nuances such as cluster configuration,

utilization of reserved instances, auto-

scaling options, microservice-based/

serverless architecture, proactive

notification system, automated failover,

right instance types, usage of availability

zones, and closed loop process for

continued optimization.

• Improves support for modern proactive

analytics by deploying new use cases in

days, not months. Reduces the time taken

to build and maintain analytics use cases,

operationalize projects into production,

and more.

Production-ready packaging and
orchestration
Once the required optimizations are applied

as per target nuances not just at a code level,

but also at the schema, orchestration and

environment level, the code is packaged back

as production-ready jobs and scripts. This

ensures that the end-to-end behaviour of the

migrated workloads is identical across all use

cases such as jobs, procedures, etc. The code

and the core business logic are transformed

to cloud-native wrappers and orchestrators.

The hierarchy of execution or the orchestration

mechanism is also defined in the scripts.

These shell scripts, procedures, DML scripts

and likewise, all work together in the new

target environment based on the transformed

scheduler/orchestrator scripts which are

production ready. Next, after thorough

and extensive system integration testing,

LeapLogic ensures end-to-end execution on

staging and production environments.

Infrastructure as code for cloud-scale

Automated code transformation also ensures

that the existing investments can be reused

through infrastructure as code initiatives.

These include automated enablement

of cloud services, automated tuning of

infrastructure through native spawning,

shutting it down when not required, scaling

up or down automatically as per the load,

and more. Enterprises can thus save costs,

accelerate time-to-market, and streamline their

transformation efforts leveraging automation.

2 Automated workload
transformation 3 41

44LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Ensure operational
and performance
efficiency on the
target
Cloud transformation is not a one-time

process. To meet your business objectives

and gain insights into operations, you need

to continuously improve the supporting

processes and procedures. To ensure your

workloads are performant on the cloud, we

recommend following these design principles:

• Perform operations as code to limit human

error and ensure consistent responses to

events

• Make frequent changes in small increments

that can be reversed if they fail to resolve

issues

• As your workloads evolve, your procedures

should evolve appropriately

• Test your failure scenarios at regular intervals

to identify potential sources of failure before

they happen

• Learn from all operational failures

Maximize ROI
Enterprises need to adopt a cloud-first

strategy to maximize future investments and

ROI. LeapLogic can help data and analytics

teams achieve their cloud goals by:

• Creating a fine balance between migrating

as-is, optimizing, and total re-engineering

• Designing a fluid, scalable, and elastic

architecture

• Designing an optimized schema for faster

data retrieval

• Automatically transforming and certifying

code that optimally performs on the

chosen target

• Executing the transformed workloads in

parallel for performance

• Providing target-specific optimization

settings to ensure an optimum price-

performance ratio

2 Automated workload
transformation 3 41

45LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Let’s look at the tech stack for an enterprise looking to migrate their

ETL-heavy workloads to Amazon EMR, with processing on Spark.

Tech stack design of a
sample use case

2 Automated workload
transformation 3 41

46LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Addressing non-functional
aspects

Performance

• Broke certain complex jobs into parallel jobs using dependency graph-

based segregation

• Used Spark SQL-based cache/memory execution wherever applicable

• Optimized code for:

- Increasing parallelism of sequential scripts

- Decreasing file, I/O using Spark DataFrames

- Decreasing execution time for Update/Delete statements
 using Spark DataFrames

• Optimized schema (bucketing, partitioning, ‘cluster by’) for:

- Increasing parallelism

- Optimizing Joins and Update/Delete/Merge operations

• Redshift CDW for overall faster performance

While designing the tech stack, it is important to address

all critical non-functional aspects, including third-party

integrations, for such non-functional requirements as security

and compliance, high availability, disaster recovery, failure

handling, etc. And these need to be target cloud native

specific. Here are the underlying non-functional requirements

that we considered for this use case:

2 Automated workload
transformation 3 41

47LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Reloading

• Used a reloading mechanism to reload the processed data
back to SQL Server and DB2 for analytical purposes

Exception handling and logging

• Used CloudWatch and SNS for exception handling, monitoring, and
logging information about application workflow execution steps
(Started/Failed/Success) along with job name and error messages
for reporting and notification purposes

Point-in-time recovery/restartability

• Used AWS Step Functions to provide user retry capabilities
when an action is in error or failed state.

Metadata management and data lineage

• Used AWS Glue for metadata management

• Developed a custom solution for plotting data lineage

Data retention, archival, and purging

• Enabled Redshift policies for data lifecycle management

Availability

• Used metrics like 99.999 and 24*7 to define system availability
to ensure zero/near-zero downtime

Security

• Used AWS KMS and TLS-based for data security

• Used Dataguise to mask and encrypt sensitive information

2 Automated workload
transformation 3 41

48LeapLogic | Cloud-native transformation for ETL, analytics, and data warehouse

Enterprise success
stories
We have helped several Fortune 100 enterprises seamlessly achieve their workload transformation goals.

A Fortune 500 airline

established a futuristic

data platform on AWS with

integrated analytics, built-in

governance, and intelligent

data profiling capabilities.

Data platform modernization
on AWS significantly reduces
passenger wait time

A Fortune 500 global

enterprise technology provider

auto-migrated 1860 BTEQ

scripts along with ~5000 SQLs

and 64 TB data from Teradata

to Azure.

20% SLA improvement
by modernizing Teradata
workloads on Azure

Released 20% Teradata

capacity by migrating 1000

BTEQ scripts containing

16,000 queries, 750 mLoad,

TPT, and FExp scripts.

Telecom giant saves millions
with automated Teradata
transformation to a modern
data platform

An American retail company

transformed 140 Informatica

ETL scripts using automation

and operationalized in

16 weeks.

30% performance
improvement by converting
Netezza and Informatica to
Azure-Databricks stack

Read more Read more Read more Read more

2 Enterprise success
stories 431

This e-book is authored by Gurvinder Arora,

Product Marketing Lead, with the help of

key inputs from the Impetus modern data

architecture team.

© 2021 Impetus Technologies, Inc. All rights reserved. Product and company names mentioned herein may be trademarks of their respective companies.

LeapLogic is a cloud transformation accelerator owned by Impetus Technologies Inc. Impetus Technologies is focused on enabling a unified, clear, and present view for
the intelligent enterprise by enabling data warehouse modernization, unification of data sources, self-service ETL, advanced analytics, and BI consumption. For more than
a decade, Impetus has been the ‘Partner of Choice’ for several Fortune 500 enterprises in transforming their data and analytics lifecycle. The company brings together a
unique mix of software products, consulting services, and technology expertise. Our products include industry’s only platform for the automated transformation of legacy
systems to any modern or cloud-native stack and Gathr – an all-in-one data pipeline platform.

To learn more, visit www.leaplogic.io or write to inquiry@impetus.com.

START NOW

Experience powerful
cloud-native
automation in minutes

CONTACT US

Learn more about
automated cloud-native
transformation

FOLLOW US FOLLOW US

